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Abstract

The governing differential equations of motion are derived for the partial-interaction composite members with axial

force and the solutions of free vibrations are presented under common boundary conditions. An exact analytical solution

for a simply supported case is obtained. If the slip at the interface of the composite member is ignored, both the equations

and the solution can be degenerated to those corresponding to the elementary beam theory as they should be.

An approximate simple expression is also proposed to predict the fundamental frequency of the partial-interaction

composite members with axial force, which is of practical interest. Finally, numerical results and the effects of the axial

force, shear connector rigidity and other parameters upon the frequencies are presented and discussed in detail.

r 2006 Published by Elsevier Ltd.
1. Introduction

Composite members have a wide application in engineering structures since they are stronger, stiffer and
more ductile than the sum of the individual elements. The steel-concrete composite beams are the most
familiar where concrete slab is used in compressive portion of the member and steel beam in the tensile
portion. Composite members are also applicable to retrofitting of existing structures in practice [1]. The shear
connection is usually provided by the headed stud shear connectors at the interface between the two materials.
Because of the flexibility of the shear connectors, longitudinal slip at the interface will occur and make the
behavior of composite structures complex. This phenomenon is well known as the partial interaction.
Newmark et al. [2] developed a classical linear elastic partial-interaction theory for composite beams based on
the elementary beam theory. Goodman [3] independently presented the theories for layered wood systems with
interlayer slip. Girhammar and Gopu [4] presented analysis of composite beam columns with partial
interaction subjected to transverse and axial loading. Using this theory, Wang [5] proposed a simplified
method for designers to predict the maximum deflection of a composite beam with partial interaction at
working load based on the stiffness of its shear connectors. Wu et al. [6] investigated a cantilever column
subjected to lateral and axial forces and presented the non-linear slip distributions. They also discussed key
ee front matter r 2006 Published by Elsevier Ltd.
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parameters that govern the longitudinal slip and affect the deflection in detail. Fabbrocino et al. [7] and
Seracino et al. [8] extended these theories to continuous beams and emphasized the effect of the negative
bending moment. Besides these analytical works, some numerical methods were also introduced to investigate
the mechanical behaviors of partial-interaction composite beams [9–12], which mainly concerned the finite
element method.

However, investigations concerning the dynamic responses of composite beams or columns with partial
interaction are scarce. Introducing the inertia force by d’Alembert’s principle, Girhammar and Pan [13]
extended their theory for static equilibrium of partial-interaction composite beams to dynamic problems and
presented the governing differential equation of motion, which excluded the effect of the axial force. Its
improved theory that took the viscous damping into account was then presented by Adam and Jeschko [14].

This paper presents a theory for the dynamic analysis of partial-interaction composite members with axial
forces, which is applicable to, for example, plated reinforced concrete columns [1] and prestressed composite
beams. Both the governing equations and their solutions can be degenerated to that of the generic beam theory
as they should be when the slip at the interface of the composite beams is zero. Approximate expressions based
on the exact solution for a simply supported case are also proposed to predict the fundamental frequency,
which is of practical interest, of the partial-interaction composite members with axial force. The effects of the
axial force, shear connector rigidity and other parameters upon the frequencies are discussed in detail through
the solutions and their numerical results in the end.

2. Governing equation

2.1. Problems and assumptions

Let us now consider the transverse vibrations of a composite member with two sub-elements of different
materials in the x�y plane as shown in Fig. 1a. The x-axis is the neutral axis of the full-interaction composite
beam. Ei, Ii, Ai and mi (i ¼ 1, 2) denote the Young’s modulus, area moment of inertia, cross-sectional area and
the mass of the two sub-elements per unit length, respectively. L is the length of the beam and H signifies the
axial force, which is constant and positive for tension while negative for compression. It is assumed, for
convenience, that the axial force H is acted at the centroid of the full interaction cross-section. In fact, if the
axial load has an eccentric distance e from the centroid, only an additional bend moment He has to be
superimposed. The symbols h, h1, h2 and y2, standing for a few distances, are plotted in Fig. 1b.
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Fig. 1. Composite member with axial force and the coordinate system.
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Although the assumptions used in the one-dimensional theory of linear elastic partial-interaction composite
members have been described in Refs. [4,6,13], they are repeated herein for the integrity of the deduction:
(1) All the constitutive materials behave linearly and the deformations are small; (2) Bernoulli’s hypothesis of
plane cross-section applies to individual sub-elements; (3) the shear connectors between the two sub-elements
are continuous and uniformly distributed longitudinally; and (4) no transverse separation occurs on the
contact interface, therefore the curvature is the same for both the sub-elements at the same point.

2.2. Equilibrium of forces

Fig. 2 shows a free-body diagram of an infinitesimal element of length dx with internal, inertial and external
distributed actions upon it. Bending moment, shear force and normal force are denoted by M, Q and N,
respectively. A comma before subscript x or t indicates the partial differential with respect to coordinate x or
time t, respectively.

According to the hypothesis of small deformation and the dynamic equilibriums of the force and bending
moment, we have

N ¼ H, (1)

Q;x ¼ �qþmv;tt �Nv;xx, (2)

M ;x ¼ Q, (3)

where H is a constant. The dashed arrows labeled by N1, N2, M1 and M2 in Fig. 2 are the axial force and
bending moment of each sub-element, respectively. They are statically equivalent ones of the axial force N and
bending moment M of the whole cross-section, namely

H ¼ N ¼ N1 þN2, (4)

M ¼M1 þM2 �N1hþHy2, (5)

where h ¼ h1 þ h2 is the distance between the two centroids of sub-elements 1 and 2, y2 denotes the distance
of the centroid of the whole section to the centroid of sub-element 2, namely,

y2 ¼
E1A1

E1A1 þ E2A2
h ¼

E1A1

SEA
h, (6)

where SEA ¼ E1A1 þ E2A2 is the axial rigidity of the full composite members.
M

N
Q

Q + Q,x dx

N

M + M,x dx

q

dx

N1

M1

N2
M2

h

y2

(m1dx + m2dx)v,tt = (mdx)v,tt

Fig. 2. Deformed infinitesimal element.
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Taking into account the interlayer slip, Fig. 3 exhibits the forces in the axial direction of each sub-element,
including the interlayer shear force provided by the shear connectors and two axial forces N1 and N2. The
equilibrium conditions of forces of sub-elements 1 and 2 in the axial direction give

N1;x ¼ �N2;x ¼ �Qs. (7)

2.3. Kinematics of the slip of the interface

Due to the Bernoulli’s hypothesis of plane cross-section and the assumption of no transverse separation on
the interface, the geometrical relation between the slip us with the deflection v and the longitudinal
displacement u is given by (see Fig. 4)

us ¼ u2 � u1 þ v;xh, (8)
dx

N1

N2

Qs

N2 + N2,x dx

N1 + N1,x dx

Fig. 3. Forces in axial direction (longitudinal direction).

v,x h2

u1−u2v,x h1

us

1

2

h1

h2v,x h

Fig. 4. Geometrical relationship between us and v and u.
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where u1 and u2 are the longitudinal displacement at the centroids of sub-elements 1 and 2, respectively.
Differentiating Eq. (8) with respect to x results in

us;x ¼ �2 � �1 þ v;xxh, (9)

where �1 and �2 are the longitudinal strains at the centroids of sub-elements 1 and 2, respectively.

2.4. The relations of the deformation and the resultants

Since the assumption of plane section is applicable to each sub-element, the well-known relation of
curvature and bending moment satisfies

v;xx ¼ �
M1

E1I1
¼ �

M2

E2I2
(10)

And the shear connectors between the two sub-elements are assumed to be continuous and uniformly
distributed longitudinally, we have

Qs ¼ ksus, (11)

where ks denotes the shear stiffness of the shear connector per unit length. Another relation of the longitudinal
strain and the axial force is readily obtained as

�1 ¼
N1

E1A1
; �2 ¼

N2

E2A2
. (12)
2.5. Governing equation

Substitution Eq. (10) into Eq. (5) yields

v;xx ¼ �
M þN1h�Hy2

SEI
, (13)

where SEI ¼ E1I1 þ E2I2 is the area moment of inertia of no-interaction composite members. Eliminating the
bending moment M from Eqs. (1)–(3) and (13) gives

v;xxxx ¼
qþHv;xx �mv;tt �N1;xxh

SEI
(14)

Substituting Eq. (12) into Eq. (9) produces

us;x ¼
N2

E2A2
�

N1

E1A1
þ v;xxh. (15)

We then can express the derivative of the interlayer shear force Qs;x in terms of N1 and v;xx from Eqs. (4),
(11) and (15), as follows:

Qs;x ¼ ks

H �N1

E2A2
�

N1

E1A1
þ v;xxh

� �
. (16)

Using the relation of Qs and N1 given by Eq. (7), we obtain another relation of N1 and v

N1;xx ¼ �ks

H �N1

E2A2
�

N1

E1A1
þ v;xxh

� �
. (17)

To obtain the differential equation of N1, eliminating the deflection v from Eqs. (13) and (17) and
rearrangement of terms yield

N1;xx � a2N1 ¼
ksh

SEI
M � ks

1

E2A2
þ

y2h

SEI

� �
H, (18)
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where a2 is a parameter involving the stiffness of the shear connectors and given by

a2 ¼ ks

1

E1A1
þ

1

E2A2
þ

h2

SEI

� �
. (19)

Eliminating the bending moment M using Eqs. (3) and (18) produces

N1;xxxx � a2N1;xx ¼ �
ksh

SEI
ðqþHv;xx �mv;ttÞ. (20)

Eqs. (14) and (20) are a coupled differential equation set of the deflection v and axial force N1. For
convenience, they can be reduced to one governing differential equation in terms of the unique variable v,
namely

EIv;xxxxxx � ðEIa2 þ b2HÞv;xxxx þ b2mv;xxtt þ a2Hv;xx � a2mv;tt ¼ �a
2qþ b2q;xx, (21)

where EI is the flexural stiffness of the composite member when the stiffness of the shear connector
approaches infinity, i.e., of the full-interaction composite members, and b2 is another important parameter
indicating the cross-sectional property of the composite members; and they are defined as

EI ¼ SEI þ
E1A1 E2A2

E1A1 þ E2A2
h2; b2 ¼

EI

SEI
. (22)

It should be noticed that Eq. (21) can be degenerated to two limit cases, i.e., full interaction and non-
composite action. For instance, if the shear connector is rigid, namely, ks approaches infinite and a21!1, Eq.
(21) can be degenerated to

EIv;xxxx �Hv;xx þmv;tt ¼ q, (23)

which is a governing differential equation of a full-interaction composite beams with axial force H. For
another limit case, namely, ks approaches zero (a2 ¼ 0), Eq. (21) becomes

SEIv;xxxx �Hv;xx þmv;tt ¼ q. (24)

Once the transverse load q is known, the deflection v of the member can be solved from Eq. (21) for specific
boundary and initial conditions. Then the internal forces can be determined in terms of v as follows:

M ¼ EI
1

a2
v;xxxx � 1þ

H

a2SEI

� �
v;xx þ

mv;tt � q

a2SEI

� �
; Q ¼M ;x, (25)

M1 ¼ �E1I1v;xx; M2 ¼ �E2I2v;xx, (26)

N1 ¼
EI

ha2
�v;xxxx þ a2 þ

H

SEI
�

a2

b2

� �
v;xx �

mv;tt � q

SEI
þ

a2Hy2

EI

� �
; N2 ¼ H �N1, (27)

Qs ¼
1

h
ðM;x þ SEIv;xxxÞ. (28)

2.6. Boundary conditions

For the governing differential equation (21) of six-order, a total of six boundary conditions are
necessary to determine the integral constants. In practice, three classic boundary conditions at the ends of a
member are usually considered, which are (S) simply supported, (C) clamped and (F) free. For the simply
supported end, the boundary conditions M1 ¼M2 ¼ 0, v ¼ 0 and N1 ¼ Hy2=h yield, according to Eqs. (26)
and (27):

v ¼ 0; v;xx ¼ 0; SEIv;xxxx � q ¼ 0. (29)

When the end is clamped, it can be concluded that v ¼ 0, v;x ¼ 0 and us ¼ 0. The last one of these conditions
implies that N1;x ¼ �Qs ¼ 0 in accordance with Eqs. (7) and (11). Then the boundary conditions at a clamped
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end can be rendered in terms of v as

v ¼ 0; v;xx ¼ 0; v;xxxxx � a2 1�
1

b2
þ

H

a2SEI

� �
v;xxx �

q;x
SEI
¼ 0. (30)

The third conditions corresponding to the free end are M1 ¼M2 ¼ 0, QþHv;x ¼ 0 and N1 ¼ Hy2=h. By
employing Eqs. (25)–(27), the following equations are obtained:

v;xx ¼ 0; v;xxxx þ
m

SEI
v;tt �

q;x
SEI
¼ 0,

v;xxxxx � a2 þ
H

SEI

� �
v;xxx þ

mv;xtt � q;x
SEI

þ
a2H
EI

v;x ¼ 0. ð31Þ

Since a member with finite length has two ends and three end conditions, i.e., (S) simply supported, (C)
clamped and (F) free, exist at each end, six possible cases can be obtained through a combination of them.
They are denoted by SS, SC, SF, CC, CF and FF, in which SS means both two ends are simply supported, and
so on. However, four cases SS, SC, CC and CF are applicable in practice and are considered in the rest of this
paper.
3. Solutions of free vibrations

If the member vibrates freely with a resonant frequency on, we can assume

vðx; tÞ ¼ v0 ~vðxÞ expðjontÞ, (32)

where v0 is a length parameter giving the amplitude of the deflection, j denotes the imaginary unit and x ¼ x=L

signifies the non-dimensional coordinate in the x direction. Substitution of Eq. (32) into the governing
differential equation (21) and eliminating the right-hand side yield

~v;xxxxxx � ð~a
2 þ b2 ~HÞ~v;xxxx � ðb

2 ~o2
n � ~a

2 ~HÞ~v;xx þ ~a
2 ~o2

n ~v ¼ 0, (33)

where ~a, ~H and ~on are non-dimensional quantities corresponding to a, H and on as

~a2 ¼ a2L2; ~H ¼
HL2

EI
; ~o2

n ¼
mo2

nL4

EI
. (34)

The general solutions of the homogeneous differential equation (33) are based on the root characteristic of
its eigen equation

l6 � ð~a2 þ b2 ~HÞl4 � ðb2 ~o2
n � ~a

2 ~HÞl2 þ ~a2 ~o2
n ¼ 0. (35)

Introducing a symbol L ¼ l2, Eq. (35) becomes

L3 � ð~a2 þ b2 ~HÞL2 � ðb2 ~o2
n � ~a

2 ~HÞLþ ~a2 ~o2
n ¼ 0. (36)

It is a cubic equation of one variable. It can be shown that all three roots of Eq. (36) are real and one is
negative while the other two are positive (see Appendix A in detail). Letting L1o0 and L240 and L340
denote the three roots of Eq. (36), the six roots of Eq. (35) are then �l1j, �l2 and �l3, with

l1 ¼
ffiffiffiffiffiffiffiffiffiffi
�L1

p
; l2 ¼

ffiffiffiffiffiffi
L2

p
; l3 ¼

ffiffiffiffiffiffi
L3

p
. (37)

Consequently, the solution of Eq. (33) can be written as

~v ¼ c1 sinðl1xÞ þ c2 cosðl1xÞ þ c3 sinhðl2xÞ þ c4 coshðl2xÞ þ c5 sinhðl3xÞ þ c6 coshðl3xÞ. (38)

The constant ciði ¼ 1; 2; . . . ; 6Þ can be determined by the boundary conditions which lead to the
frequencies and mode shapes for free vibrations. Substitution of Eq. (38) into the boundary conditions
(29)–(31) yields

½A�fcg ¼ f0g, (39)
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where [A] is described in detail in Appendix B for specified boundary conditions and {c} is consisted of the six
integral constants ciði ¼ 1; 2; . . . ; 6Þ as follows:

fcg ¼ c1 c2 c3 c4 c5 c6
� �T

. (40)

A non-trivial solution of the constants ciði ¼ 1; 2; . . . ; 6Þ can be obtained only when the determinant of the
coefficient matrix in Eq. (39) vanishes. In this manner, the following frequency equations for four cases are
determined:

Aj j ¼ 0. (41)

In general, the frequency Eq. (41) is transcendental with respect to the frequency ~o, so the trial method can
be used to find their roots. In detail, the frequency ~o is stepped through a sequence of small increments and the
sign of the determinant of the matrix [A] is computed for each value of ~o and recorded. After a sufficient
number of sign crossings have been identified, the value of ~o that satisfies Eq. (41) can be isolated and refined
using bisection.

It should be noted that an exact solution of the frequency can be obtained for an SS member through
simplifying the first one of Eq. (41), which is

~o2
n ¼ ~o2

n0 1þ
~H
~Nn;cr

�
b2 � 1

~a2=ðnpÞ2 þ b2

" #
, (42)

where ~on0 denotes the nth-order non-dimensional frequency of full-interaction composite beam without axial
force and is defined as

~o2
n0 ¼

mL4

EI
o2

n0 (43)

in which on0 is the nth-order frequency of a full-interaction composite beam with SS ends

o2
n0 ¼

np
L

� 	4 EI

m
. (44)

And ~Nn;cr denotes the nth-order critical axial force of a full-interaction composite member with SS ends in
dimensionless form

~Nn;cr ¼
L2

EI
Nn;cr (45)

in which the symbol Nn;cr signifies the nth-order critical axial force, i.e.,

Nn;cr ¼
np
L

� 	2
EI (46)

of an SS beam.
It is readily found, from Eq. (42), that the axial force and the interlayer slip independently affect the

frequencies of the composite beam when its two ends are simply supported. A tensile force enlarges the
frequencies while a compressive force reduces the frequencies of a partial-interaction composite member,
which is similar to the case of full-interaction composite beams. Since b241 (see its definition in the second
one of Eq. (22)) always holds, the last item in the square bracket of Eq. (42), which implies the effect of the
stiffness of the shear connectors, leads to the decrease of the frequencies of partial-interaction composite
members compared with full-interaction composite ones. If the composite member is bonded perfectly, i.e., no
slip occurs at the interface, the parameter ~a2, which reflects the rigidity of the shear connectors, will approach
infinite, Eq. (42) becomes

~o2
n ¼ ~o2

n0 1þ
~H
~Nn;cr

� �
(47)

which has been obtained by Weaver et al. [15].
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In Eq. (42), the frequency decreases with the axially compressive force. The critical axial load ~Hn;cr of the buckling
of the partial-interaction composite member can be obtained when the frequency approaches zero, namely>

~Hn;cr ¼
~a2 þ ðnpÞ2

~a2 þ b2ðnpÞ2
~Nn;cr. (48)

This agrees with the result of Girhammar and Gopu [4].
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In the general case of arbitrary boundary conditions, the frequencies are obtained from transcendental equation
(41), which require numerical solutions described in the preceding section. Usually, the fundamental frequency is
of most importance in practice. In consideration of Eq. (42), an approximate expression is proposed as

~o2
1 ¼ ~o2

1;0 1�
~H


 


~N1;cr

 !g

�
b2 � 1

~a2=ðmpÞ2 þ b2

" #
(49)
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to predict the fundamental frequencies of the partial-interaction composite members in which the plus and minus
symbols correspond to tensile and compressive axial forces, respectively. The critical axial load ~N1;cr and the
parameters m and g in Eq. (49) are determined from numerical regression analyses for different boundary
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conditions and are calculated to be

~N1;cr ¼ p2; m ¼ 1:0; g ¼ 1:00 for SS;
~N1;cr ¼ 4p2; m ¼ 2:0; g ¼ 1:03 for CC;
~N1;cr ¼ 0:25p2; m ¼ 0:5; g ¼ 1:10 for CF;
~N1;cr ¼ 2:045p2; m ¼ 1:5; g ¼ 1:03 for SC:

(50)

In fact, the critical axial loads ~N1;cr for four boundary conditions coincide with those from the elementary beam
theory.

4. Numerical examples and discussions

In this section, numerical examples are presented for illustrating the proposed method and depicting the
effect of the axial load and the shear rigidity of the shear connector upon the frequencies of the
partial-interaction composite members. Figs. 5–8 show that the relative frequency ~o2

1= ~o
2
1;0 varies in a similar

way with respect to the parameter ~a2 for four end conditions. It is the parameter ~a2 that has a sensitive
range, in which the relative frequency is affected more significantly by ~a2. If ~a2 does not locate in this
range, variation of the value of ~o2

1= ~o
2
1;0 is insignificant. The ranges are different for four boundary conditions,

which are ~a2 2 ½100; 102:5� for SS, ~a2 2 ½101; 104� for CC, ~a2 2 ½100:5; 103� for SC and ~a2 2 ½10�0:5; 102:5� for CF.
In fact, it can be found that the frequencies are almost independent of ~a2 when ~a2=ðmpÞ25b2 or ~a2=ðmpÞ2bb2,
since the last term in the square bracket of Eq. (49) is independent of ~a2 or vanishes in the two cases,
respectively.

Figs. 9–12 demonstrate the effect of the parameter b2 ¼ EI=SEI upon the relative frequency ~o2
1= ~o

2
1;0 under

four end conditions. It is readily found that their relation approaches linearity gradually from a sagging curve
with the increase of the parameter ~a2. Simultaneously, the approached lines also become horizontal with the
increase of the parameter ~a2, which implies that the relative frequency ~o2

1= ~o
2
1;0 is insignificantly affected by the

parameter b2 for composite members with large ~a2 value. This can be clearly seen from Eq. (49) for
~a2=ðmpÞ2bb2. When b2 approaches 1 (b2 ¼ EI=SEI41), all the curves in Figs. 9–12 approache the value of
0.9, which can also be found from Eq. (49).

The effects of the axial force upon the frequency are illustrated in Figs. 13–16 for four end conditions.
A perfectly linear relation between the axial force ~H= ~N1;cr and the relative frequency ~o2

1= ~o
2
1;0 is shown both in
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Eq. (49) and Fig. 13 for SS cases. However, their relation is slightly non-linear for other three end conditions
as shown in Figs. 14–16. Thus an exponent g, whose value is near 1 and given in Eq. (50), is introduced in the
approximate expression (49). Figs. 13–16 also show the fact that the influence of the axial force is independent
of the parameter ~a2 for all four boundary conditions, since the solid lines corresponding to the exact solutions
have the same form with different parameter ~a2. These phenomena are also displayed in Figs. 9–12. It implies
that the effects of axial force on the fundamental frequency of partial-interaction composite members are
independent of the degree of the shear connection of the composite members. In other words, the influence of
the axial force on the frequency is the same for both a non-interaction member (ks ¼ 0) and a full-interaction
member ðks !1Þ.
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5. Conclusions
1.
 The governing differential equations of motion are derived for the partial-interaction composite members
with axial force and the solutions of free vibrations are presented under common boundary conditions. If
the slip at the interface of the composite members is ignored, the equations can be degenerated to those
from the elementary beam theory, as expected.
2.
 An exact solution for the simply supported cases is obtained while approximate and simple ones for other
boundary conditions are proposed to predict the fundamental frequency of the partial-interaction
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composite members with axial force. The exact solution can also be degenerated to that for the case of a
full-interaction composite member, which has been available in literatures.
3.
 The results show the fact that the effects of the axial force upon the frequencies are independent of the
degree of the shear connection of partial-interaction composite members.
4.
 The parameter ~a2 has a sensitive range, in which the frequency is affected significantly by ~a2, and outside
which its effect is insignificant. The influence of the parameter b2 is coupled with the parameter ~a2.
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The relation of b2 with the relative frequency approaches a horizontal line from a sagging curve with the
increase of the parameter ~a2.
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Appendix A

In this section, it will be shown that Eq. (36) has three real roots, with one being negative and the other two
positive. The standard form of a cubic equation in one variable can be written as

x3 þ ax2 þ bxþ c ¼ 0, (A.1)

where a, b and c are real. Its discriminant D is given by [16]

D ¼
p3

27
þ

q2

4
(A.2)

in which

p ¼ �
a2

3
þ b; q ¼

2a3

27
�

ab

3
þ c. (A.3)

If the discriminant is negative, i.e., Do0, Eq. (A.1) has three real roots x1, x2 and x3, and they satisfy

x1 þ x2 þ x3 ¼ �a; x1x2 þ x2x3 þ x3x1 ¼ b; x1x2x3 ¼ �c. (A.4)
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According to Eq. (36), the coefficients a, b and c of the cubic equation (A.1) are

a ¼ �ð~a2 þ b2 ~HÞ; b ¼ �ðb2 ~o2
n � ~a

2 ~HÞ; c ¼ ~a2 ~o2
n. (A.5)

Consequently, the discriminant of Eq. (36) can be calculated. To avoid the calculation of fraction number,
another constant R is introduced as

R ¼ �108D. (A.6)

By introducing t ¼ 1=b2, through some algebraic operations, we get

R ¼ A2 þ Bþ 4 ~o2ðC2 þ E2 þ F ~o4b6Þ, (A.7)

where

A ¼ ~a2b2 ~H
2
þ ~o2b4 ~H � ð2t� 1Þ~a4 ~H þ ~o2 ~a2b2 � ~o2 ~a2, (A.8)

B ¼ 4tð1� tÞ~a8 ~H
2
, (A.9)

C ¼ ~a2b2 ~H
2
� 1

2
ðt2 þ 3t� 2Þ~a4 þ ~o2b2, (A.10)

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðt2 þ 3t� 2Þ2=4

q
~a4 þ

tþ 3b2 � 4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðt2 þ 3t� 2Þ2=4

q ~o2 (A.11)

and

F ¼
ð1� tÞð13tþ 3Þ

ðtþ 3Þðtþ 4Þ
. (A.12)

Since b241, i.e., 0oto1, it can be concluded that 1� ðt2 þ 3t� 2Þ2=440 in the expression of E in
Eq. (A.11) and B40, F40. Thus, R in Eq. (A.7) is always positive, namely, the discriminant D in Eq. (A.2) is
negative and Eq. (36) has three real roots.

From the last of Eq. (A.4), all or only one of the three real roots should be negative because of
x1x2x3 ¼ �c ¼ �~a2 ~o2o0. If all the three real roots are negative, both the coefficients a and b

should be positive since the first two of Eq. (A.4) hold. However, at least one of the coefficients a

and b is negative because it can be readily shown that ao0 for ~H � 0 and bo0 for ~Hp0 by using their
definition in the first two of Eq. (A.5). As a result, one of the three real roots of Eq. (36) is negative and the
other two are positive.

Appendix B

For SS, SC, CC and CF beams, the coefficient matrix [A] is given by

½A� ¼
ASð0Þ

ASð1Þ

" #
; ½A� ¼

ASð0Þ

ACð1Þ

" #
; ½A� ¼

ACð0Þ

ACð1Þ

" #
; ½A� ¼

ACð0Þ

AF ð1Þ

" #
, (B.1)

respectively, where the coefficient matrix ½ASð0Þ� denotes the value of ½AS� at x ¼ 0 and so on. The matrices
½AS�, ½AC � and ½AF � can also be written as

½AS� ¼ ½AS1 AS2 AS3 �, (B.2)

½AC � ¼ ½AC1 AC2 AC3 �, (B.3)

½AF � ¼ ½AF1 AF2 AF3 �, (B.4)
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where

½AS1� ¼

sinðl1xÞ cosðl1xÞ

�l21 sinðl1xÞ �l
2
1 cosðl1xÞ

l41 sinðl1xÞ l41 cosðl1xÞ

2
64

3
75, (B.5)

½AS2� ¼

sinhðl2xÞ coshðl2xÞ

l22 sinhðl2xÞ l22 coshðl2xÞ

l42 sinhðl2xÞ l42 coshðl2xÞ

2
64

3
75, (B.6)

½AS3� ¼

sinhðl3xÞ coshðl3xÞ

l23 sinhðl3xÞ l23 coshðl3xÞ

l43 sinhðl3xÞ l43 coshðl3xÞ

2
64

3
75, (B.7)

½AC1� ¼

sinðl1xÞ cosðl1xÞ

l1 cosðl1xÞ �l1 sinðl1xÞ

ðl51 þ g1l
3
1Þ cosðl1xÞ �ðl

5
1 þ g1l

3
1Þ sinðl1xÞ

2
64

3
75, (B.8)

AC2½ � ¼

sinhðl2xÞ coshðl2xÞ

l2 coshðl2xÞ l2 sinhðl2xÞ

ðl52 � g1l
3
2Þ coshðl2xÞ ðl

5
2 � g1l

3
2Þ sinhðl2xÞ

2
64

3
75, (B.9)

½AC3� ¼

sinhðl3xÞ coshðl3xÞ

l3 coshðl3xÞ l3 sinhðl3xÞ

ðl53 � g1l
3
3Þ coshðl3xÞ ðl

5
3 � g1l

3
3Þ sinhðl3xÞ

2
64

3
75, (B.10)

½AF1� ¼

�l21 sinðl1xÞ �l21 cosðl1xÞ

ðl41 � g2Þ sinðl1xÞ ðl41 � g2Þ cosðl1xÞ

ðl51 þ g3l
3
1 � g4l1Þ cosðl1xÞ �ðl

5
1 þ g3l

3
1 � g4l1Þ sinðl1xÞ

2
64

3
75, (B.11)

½AF2� ¼

l22 sinhðl2xÞ l22 coshðl2xÞ

ðl42 � g2Þ sinhðl2xÞ ðl42 � g2Þ coshðl2xÞ

ðl52 � g3l
3
2 � g4l2Þ coshðl2xÞ ðl

5
2 � g3l

3
2 � g4l2Þ sinhðl2xÞ

2
64

3
75, (B.12)

½AF3� ¼

l23 sinhðl3xÞ l23 coshðl3xÞ

ðl43 � g2Þ sinhðl3xÞ ðl43 � g2Þ coshðl3xÞ

ðl53 � g3l
3
3 � g4l3Þ coshðl3xÞ ðl

5
3 � g3l

3
3 � g4l3Þ sinhðl3xÞ

2
664

3
775 (B.13)

and the parameters g1, g2, g3 and g4 are defined as

g1 ¼ ~a2 � ~a2
�
b2 þ b2 ~H; g2 ¼ b2 ~o2; g3 ¼ ~a2 þ b2 ~H ; g4 ¼ b2 ~o2 � ~a2 ~H. (B.14)
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